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We propose and analyze an adaptive inverse iterative method for solving the Maxwell
eigenvalue problem with discontinuous physical parameters in three dimensions. The
adaptive method updates the eigenvalue and eigenfunction based on an a posteriori error
estimate of the edge element discretization. At each iteration, the involved saddle-point
Maxwell system is transformed into an equivalent system consisting of a singular Maxwell
equation and two Poisson equations, for both of which preconditioned iterative solvers are
available with optimal convergence rate in terms of the total degrees of freedom. Numer-
ical results are presented, which confirms the quasi-optimal convergence of the adaptive
edge element method in terms of the numerical accuracy and the total degrees of freedom.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

This work is concerned with the numerical solution of the Maxwell eigenvalue problem in computational electromagne-
tism. The Maxwell eigenvalue problem arises from the electromagnetic waveguides and resonances in cavities (see, e.g.
[20,21]) and the governing equations can be stated as follows:
r� ðl�1r� EÞ ¼ x2eE in X; ð1:1Þ
r � ðeEÞ ¼ 0 in X; ð1:2Þ
n� E ¼ 0 on @X; ð1:3Þ
where X is a bounded domain with Lipschitz boundary @X;l and e are the magnetic permeability and the electric permit-
tivity respectively and x is the resonant angular frequency of the electromagnetic wave for the cavity X.

Finite element methods for computing Maxwell eigenvalue problem have been widely used and their convergences have
been well studied; see [4,5,22,25] and the references therein. The main focus of this work is on the practically important
cases where the physical domain X may have reentrant corners or the coefficients l; e may be highly discontinuous, thus
resulting in the singularities of the eigenfunction E; see, e.g. [11,12]. The singularities affect greatly the overall accuracy
of finite element solutions when regular finite element meshes are used.

Adaptive edge element methods have been proved to be very successful in resolving the local singularities of the Maxwell
equations; see [1,7] for the eddy current problem, [6,10] for the time dependent and time-harmonic problems, and [8] for the
. All rights reserved.
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saddle-point Maxwell system. The success and popularity of the adaptive finite element methods lie in the following two
features: they are mostly based on a posteriori error estimates, which reflect the actual error between the true solution
and the discrete one and are usually represented by some computable quantities such as the discrete solution and the given
data of the equation; they can reach the quasi-optimality in terms of the numerical accuracy and computational complexity.

Based on an a posteriori error estimate of the edge element discretization, we will construct an adaptive inverse iteration
method to solve the first eigenvalue and the corresponding eigenfunction of system (1.1)–(1.3).

The basic procedure of the adaptive method is as follows:
SOLVE! ESTIMATE! MARK! REFINE:
SOLVE will tackle a variational problem associated with system (1.1)–(1.3), which is constrained with a divergence law (1.2).
A traditional approach is to formulate this system as a saddle-point problem [3,13] by introducing a Lagrangian multiplier to
reinforce the divergence-free property and the uniqueness of the solutions. But it is still quite challenging how to effectively
solve the algebraic system resulting from the finite element approximation of the saddle-point problem [18,19].

In this work, we plan to overcome this obstacle in a novel approach. At each iteration of the new method we first solve a
Laplace equation to precorrect the iterate from the previous step, then solve a singular curl–curl system, which is followed by
a weak divergence correction to ensure that the numerical solution is divergence-free in the discrete sense. It is worth noting
that in each step we solve a singular curl–curl system once and a Laplace equation twice, for both of which there are mature
preconditioned solvers with optimal preconditioners available [16,23]. In addition, we will show that the solution produced
by the aforementioned procedure is nothing but the finite element solution to a desired saddle-point problem. Exploiting
this equivalence, we shall derive a reliable a posteriori error estimate for ESTIMATE. With the help of the error estimate,
MARK determines all refining elements for refinement. The step REFINE generates a finer triangulation by dividing those ele-
ments marked in the step MARK.

The layout of this paper is as follows. In Section 2, we present an exact inverse iterative method for the continuous eigen-
value problem and prove its convergence. A special solution process for the edge element discretization and the correspond-
ing adaptive inverse iterative algorithm are given in Section 3. Section 4 is devoted to deriving the a posteriori error estimate
for the edge element approximation of the curl–curl system in the inverse iteration. Finally, we present some numerical
experiments in Section 5 to show the robustness and quasi-optimal convergence of the new adaptive algorithm in terms
of the numerical accuracy and the total degrees of freedom used.

2. Inverse iterative method

In this section we introduce the inverse iterative method for computing the first eigenvalue and the corresponding eigen-
function of system (1.1)–(1.3). For this we need the following Sobolev spaces:
H0ðcurl; XÞ ¼ fu 2 L2ðXÞ3;r� u 2 L2ðXÞ3;u� n ¼ 0 on @Xg;
X ¼ fu 2 H0ðcurl; XÞ;r � ðeuÞ ¼ 0 in Xg:
Then the variational formulation of equations (1.1)–(1.3) reads as follows:
Find E 2 X and x2 > 0 such that
ðl�1r� E;r� FÞ ¼ x2ðeE; FÞ 8F 2 X: ð2:1Þ
The existence of eigenvalues and eigenfunctions of (2.1) is the conclusion of the Hilbert–Schmidt theory. To see this, we de-
fine an operator K : L2ðXÞ3 ! X by requiring that if f 2 L2ðXÞ3, then Kf 2 X satisfies
ðl�1r� ðKfÞ;r� vÞ ¼ ðef;vÞ 8v 2 X: ð2:2Þ
Thanks to the symmetry of the bilinear form involved in (2.2), the compactness result by Weber [31] and the Lax–Milgram
lemma, K is self-adjoint and compact as an operator: L2ðXÞ3 ! L2ðXÞ3 (see [15,24]). Thus, K converts the eigenvalue problem
(2.1) to an operator eigenvalue problem
KE ¼ mE; ð2:3Þ
with m ¼ x�2. Thus by virtue of Hilbert–Schmidt theory we have [15,24]:

Theorem 2.1. There exist an infinite discrete set of eigenvalues mk > 0; k ¼ 1;2; . . . and the corresponding eigenfunctions
Ek 2 X;Ek – 0 such that
1. Eq. (2.3) holds for each pair ðmk;EkÞ;
2. m1 P m2 P � � � > 0, and limk!1mk ¼ 0;
3. fEkg1k¼1 are orthonormal in inner product ðe�; �Þ;
4. X ¼ spanfE1;E2; . . .g and kerðKÞ ¼ rH1

0ðXÞ.

Now by applying the inverse iterative algorithm (cf. [28]) to the Maxwell eigenvalue problem (2.1), we can formulate
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Algorithm 2.1 (Exact inverse iteration algorithm). Given a tolerance tol > 0 and set j := 0;

1. Given u0 such that ðeu0;u0Þ ¼ 1 and r � ðeu0Þ ¼ 0; Set j := 1.
2. Find ûj 2 X such that
ðl�1r� ûj;r� vÞ ¼ ðeuj�1;vÞ 8v 2 X: ð2:4Þ
3. Compute kj ¼
ðl�1r�ûj ;r�ûjÞ

ðeûj ;ûjÞ
, set uj ¼

ûj

ðeûj ;ûjÞ1=2.

4. If kj�kj�1
kj

��� ��� < tol, output kj and Ej; else set j :¼ jþ 1 and go to Step 2.

We have the following convergence for Algorithm 2.1, whose proof is standard (cf. [9]).

Theorem 2.2. Suppose fðx2
k ;EkÞg1k¼1 are the eigenvalues and eigenfunctions of Problem (2.1) such that the first eigenvalue x2

1 is
simple and x2

1 < x2
2 6 x2

3 6 � � � If the initial guess u0 satisfies that ðeu0;E1Þ–0, then the sequences fujg1j¼1 and fkjg1j¼1 generated
by Algorithm 2.1 converge in the followings sense
ke1=2ðuj � rE1Þk0 ! 0 and kj ! x2
1 as j!1; ð2:5Þ
where r is a constant given by
r ¼ 1 if ðeu0;E1Þ > 0; r ¼ �1 if ðeu0;E1Þ < 0:
3. Edge element based adaptive inverse iterative method

In this section, we propose an adaptive inverse iterative method based on Algorithm 2.1 and the edge element discreti-
zation. First, one may realize a major difficulty in the approximation of the Sobolev space X used in the variational equation
(2.4): there are no conveniently implementable finite element spaces with reasonable degrees of freedom in three dimen-
sions available in the literature that may reinforce the divergence constraint in space X.

A natural approach to reinforce the divergence constraint condition in X is to transform the variational equation (2.4) into
the following equivalent saddle-point formulation: Find ðûj; p̂jÞ 2 H0ðcurl; XÞ � H1

0ðXÞ such that
ðl�1r� ûj;r� vÞ þ ðev;rp̂jÞ ¼ ðeuj�1;vÞ 8v 2 H0ðcurl; XÞ;
ðeûj;rqÞ ¼ 0 8q 2 H1

0ðXÞ:

(
ð3:1Þ
This saddle-point system is uniquely solvable; see, e.g. [8].
Now we are going to discuss the discretization of the saddle-point system (3.1) by the edge element method. Let fT jgjP0

be a nested sequence of shape regular tetrahedral triangulations over X such that e and l are constants on each K 2 T j, and
F j be the collection of all interior faces in T j. As it will be seen, the nested meshes fT jgjP0 will be recursively obtained by
adaptive refinements of the initial mesh T 0 based on an a posteriori error estimate.

On each mesh T j, we introduce the lowest order edge element space of the first family (cf. [26]):
Vh
j ¼ fv 2 H0ðcurl; XÞ; vjK ¼ aK þ bK � x; 8K 2 T jg:
It is known that each function in Vh
j is uniquely determined by the degrees of freedom

R
e v � dl; e 2 Ej

� �
, where Ej is the set

consisting of all interior edges of T j. To deal with the divergence constraint we need to introduce a Lagrange multiplier space
S

h
j , which is taken to be the standard piecewise linear finite element subspace of H1

0ðXÞ over mesh T j.
With the above preparations, we are ready to approximate the saddle-point problem (3.1) by the edge element method.
Let Uj�1 2 Vh

j�1 be an approximation of the iterate uj�1 in (3.1). Then we suggest to approximate (3.1) by the following
discrete problem:

Find ðeUj; ePjÞ 2 Vh
j � Sh

j such that
ðl�1r� eUj;r� VÞ þ ðeV;rePjÞ ¼ ðeUj�1;VÞ 8V 2 Vh
j ;

ðeeUj;rQÞ ¼ 0 8Q 2 S
h
j :

(
ð3:2Þ
For the convenience of the subsequent analysis, we introduce also the auxiliary continuous counterpart of the discrete sys-
tem (3.2):

Given Uj�1 2 Vh
j�1 for j P 1, find ðû�j ; p̂�j Þ 2 H0ðcurl; XÞ � H1

0ðXÞ such that
ðl�1r� û�j ;r� vÞ þ ðev;rp̂�j Þ ¼ ðeUj�1;vÞ 8v 2 H0ðcurl; XÞ;

eû�j ;rq
� �

¼ 0 8q 2 H1
0ðXÞ:

8<: ð3:3Þ
The discrete saddle-point system (3.2) is a natural choice for the approximation of the system (2.4) in Algorithm 2.1. Unfor-
tunately there are still no fast solvers of preconditioning type available in the literature for the discrete system (3.2). Some
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efficient iterative preconditioned solvers with relaxation parameters were proposed in [17] and [19] for the discrete
saddle-point systems similar to (3.1). However the efficiency of those algorithms depends strongly on the availability of
efficient preconditioners for the stiffness matrix associated with the symmetric bilinear form in the first equation of (3.2)
and the Schur complement matrix associated with (3.2). It is still open and challenging how to construct those efficient pre-
conditioners, especially for the cases considered in this work that the physical parameters l and e in (3.2) may have large
jumps across the interfaces of different media. Another difficult issue one needs to take care of in designing an efficient sol-
ver for the discrete system (3.2) lies in the fact that the stiffness matrix associated with the symmetric bilinear form in the
first equation of (3.2) is singular, while most existing preconditioned solvers work only for nonsingular stiffness matrices;
see [17,19] and the references therein.

To overcome the aforementioned two difficulties in solving the saddle-point system (3.1), we are now going to propose an
equivalent implementation of (3.2), for which fast preconditioned solvers are available. This will become an essential step in
the adaptive inverse iterative algorithm to be proposed at the end of this section.

3.1. Splitting procedure

Given j P 1 and some Uj�1 2 Vh
j�1 for approximating the iterate uj�1 in (3.1).

1. Find Pj 2 Sh
j such that
ðerPj;rQÞ ¼ ðeUj�1;rQÞ 8Q 2 Sh
j ; ð3:4Þ
2. Find bU�j 2 Vh
j such that
ðl�1r� bU�j ;r� VÞ ¼ ðeðUj�1 �rPjÞ;VÞ 8V 2 Vh
j ; ð3:5Þ
3. Find Uj 2 Sh
j such that
ðerUj;rQÞ ¼ ðebU�j ;rQÞ 8Q 2 S
h
j ; ð3:6Þ
and set bUj :¼ bU�j �rUj.

As we will describe at the end of this section, each step of the Splitting Procedure above can be realized by a PCG solver
with optimal convergence independent of the finite element mesh size.

Now we demonstrate that the Splitting Procedure is equivalent to the discrete saddle-point problem (3.2).

Lemma 3.1. The discrete saddle-point problem (3.2) has a unique solution ðeUj; ePjÞ 2 Vh
j � Sh

j , and ðeUj; ePjÞ is the same as ðbUj; PjÞ
produced by the Splitting Procedure.

Proof. We begin with the existence of a unique solution to (3.2). As the spaces concerned are all finite dimensional, it suf-
fices to prove that (3.2) has a trivial solution ðeUj; ePjÞ ¼ ð0;0Þ for a vanishing right-hand side, namely Uj�1 ¼ 0. To see this,
taking V ¼ eUj in the first equation of (3.2) and noting the second equation, we see ðl�1r� eUj;r� eUjÞ ¼ 0, hence
r� eUj ¼ 0. Then by means of the discrete potential representation [16,24], there exists a eU 2 S

h
j such that eUj ¼ reU. Substi-

tuting it into the second equation of (3.2) yields eU ¼ 0, thus we have eUj ¼ 0. The result ePj ¼ 0 follows by taking V ¼ rePj in
the first equation of (3.2).

Next we show ðeUj; ePjÞ is the same as ðbUj; PjÞ produced by the Splitting Procedure. Thanks to the unique solvability of the
problem (3.2), it suffices to verify that ðbUj; PjÞ is uniquely defined and satisfies the discrete saddle-point problem (3.2).
Noting that the space rSh

j is embedded in Vh
j [15], we can take V ¼ rQ with Q 2 Sh

j in the first equation of (3.2) to see thatePj and Pj both solve the same equation (3.4), which is clearly uniquely solvable and so Pj ¼ ePj. Now it follows from (3.4) that
Uj�1 �rPj is orthogonal to the space rSh

j in Vh
j with respect to the inner product ðe�; �Þ. This orthogonality, along with the

fact that rSh
j is the kernel of r�, implies that (3.5) is trivially satisfied for the subspace rSh

j of Vh
j . Therefore, we may

restrict (3.5) to Xh
j , the orthogonal complement of rSh

j in Vh
j with respect to the inner product ðe�; �Þ and show (3.5) is

uniquely solvable in Xh
j . This is equivalent to proving bU�j ¼ 0 in Xh

j for a vanishing right-hand side in (3.5). Clearly in this case
we know from (3.5) that r� bU�j ¼ 0. Then by virtue of the discrete potential representation [16,24] again, there exists abU 2 Sh

j such that bU�j ¼ rbU. Since (3.5) is now restricted in Xh
j , the orthogonal complement ofrSh

j in Vh
j , it can only happen

that bU�j ¼ 0. This proves the solvability of (3.5) and that bU�j is unique in Xh
j .

Now filtering all the solutions bU�j to (3.5) by (3.6), we obtain a unique output ðbUj; PjÞ generated by the Splitting Procedure.
In fact, we know from (3.5) and (3.6) that ðbUj; PjÞ satisfies
ðl�1r� bUj;r� VÞ ¼ l�1r� bU�j ;r� V
� �

¼ ðeðUj�1 �rPjÞ;VÞ 8V 2 Vh
j

and
ðebUj;rQÞ ¼ ðebU�j ;rQÞ � ðerUj;rQÞ ¼ 0 8Q 2 Sh
j :
So ðbUj; PjÞ is indeed a solution to the discrete saddle-point problem (3.2), or equal to the unique solution ðeUj; ePjÞ. h
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We see from the equivalence in Lemma 3.1 that the Splitting Procedure is actually an approximation of the continuous
problem (3.3), which is the perturbed version of (3.1), i.e., the equivalent saddle-point formulation of the original problem
(2.4). But from the numerical implementation point of view, the Splitting Procedure provides a quite different and much
more efficient solver to the system (2.4), compared to the solver (3.2).

The equivalence in Lemma 3.1 inspires a central idea of this work: one may use the Splitting Procedure to generate the
approximate solution ðbUj; PjÞ to the continuous system (2.4), while use the edge element system (3.2) to derive the desired a
posteriori error estimate for its discrete solution ðeUj; ePjÞ.

With the above preparations, we are now ready to formulate our major adaptive inverse iterative algorithm based on Algo-
rithm 2.1 and an a posteriori error estimate of the edge element system (3.2). The derivations of the a posteriori error estimate
and the resulting local a posteriori error indicators will be carried out in the next section; see Theorem 4.1. But for the formulation
of the adaptive inverse iterative algorithm, we need to first introduce these local error indicators over each element K 2 T j:
g2
1;K ¼ h2

KkeðUj�1 �rPjÞk2
L2ðKÞ þ

X
F�@K\X

hFðksn� l�1r� bUjtk2
L2ðFÞ þ kseðUj�1 �rPjÞ � ntk2

L2ðFÞÞ;

g2
2;K ¼

X
F�@K\X

hFksn � ebUjtk2
L2ðFÞ
and
gK ¼ g2
1;K þ g2

2;K

� �1
2
; g max ¼max

K2T j

gK ;
where s � t represents the jump across each face F, and hK and hF are the diameters of element K and face F respectively.
With these notations, we can now formulate our adaptive inverse iterative algorithm for the Maxwell’s eigenvalue prob-

lem (1.1)–(1.3).

Algorithm 3.1 (Adaptive inverse iterative algorithm). Choose k0 > 0;0 < h < 1, tolerance tol and an initial mesh T 0; set j :¼ 0.

1. Choose a U0 2 Vh
0 such that ðeU0;U0Þ ¼ 1, and set T 1 :¼ T 0;

2. Set j :¼ jþ 1;
3. Solve (3.2) on mesh T j by the Splitting Procedure to get ðbUj; PjÞ;

4. Compute kj ¼
ðl�1r�bU j ;r�bU jÞ

ðebU j ;
bU jÞ

;Uj ¼
bU j

ðebU j ;
bU jÞ1=2

;

5. If kj�kj�1
kj

��� ��� < tol, output kj and Uj; else, do the following:

(a) Compute the local a posteriori error indicator gK on each K 2 T j;
(b) Select a subset Mj � T j such that
gK P hgmax 8K 2 Mj;
(c) Refine each element in Mj and some additional elements in T j nMj for conformity to obtain T jþ1, go to Step 2.
In the remainder of this section, we will describe briefly some existing fast solvers for each equation involved in the Split-
ting Procedure. First for the two Poisson systems in (3.4) and (3.6), fast solvers have been well developed which have optimal
convergence in terms of the total degrees of freedom used, such as (algebraic) multigrid or nonoverlapping domain decom-
position preconditioned conjugate gradient (PCG) method; see [32]. Thanks to the nodal auxiliary space preconditioner [16]
and the two-level implementation for a singular system in PHG [27] and Hypre [23], it is also possible for us to solve (3.5) by
a PCG method, which converges with optimal rate independent of the finite element mesh sizes. Next we describe briefly
such an optimal preconditioner. By Ah we denote the stiffness matrix associated with the bilinear form in (3.5) and Lh the
stiffness matrix associated with the bilinear form in (3.4) or (3.6), then an optimal multilevel preconditioner of the form
K�1
h þ PhB�1

h PT
h

was proposed in [16] (see also [23]), where Kh stands for the Gauss–Seidel Smoother for Ah;Bh represents the (algebraic)
multigrid preconditioner for Lh, and Ph represents the interpolant from vector linear Lagrange element space ðSh

j Þ
3 to the

Nédélec element space Vh
j .

4. The a posteriori error analysis

In this section we establish the a posteriori error estimate for the solution to the edge element system (3.2), which pro-
vides the essential computable local quantities in each element required in Algorithm 3.1 (see Step 5) to determine which
elements at the current level to be refined. Unless specified otherwise, C will always denote a generic constant independent
of the functions under consideration and may be different at each occurrence.

Let û�j and bUj be respectively the exact solution of (3.3) and the edge element solution achieved by the Splitting Procedure,
then our task is to bound the energy norm of the error û�j � bUj in terms of some computable quantities (called a posteriori
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error indicators) from the computed edge element solution and the given data of the Maxwell system. Due to the equiva-
lence in Lemma 3.1, we shall also write ðbUj; PjÞ for the solution ðeUj; ePjÞ to (3.2).

For the a posteriori error estimate, we will make use of two discrete operators: the first one is the Scott–Zhang operator
Is
j : H1

0ðXÞ ! S
h
j [29] and the second is the Beck–Hiptmair–Hoppe–Wohlmuth operator Pj : H1ðXÞ3 \H0ðcurl; XÞ ! Vh

j [1].
For any K 2 T j; F 2 F j, and any / 2 H1

0ðXÞ;/h 2 Sh
j ; I

s
j satisfies the following stable and approximation properties:
Is
j /h ¼ /h; krIs

j /kL2ðKÞ 6 kr/kL2ðDK Þ;

k/� Is
j /kL2ðKÞ 6 ChKkr/kL2ðDK Þ; k/� Is

j /kL2ðFÞ 6 Ch1=2
F kr/kL2ðDF Þ;

ð4:1Þ
while for any wh 2 Vh
j ;w 2 H1ðXÞ3 \H0ðcurl; XÞ;Pj admits the following stable and approximation properties:
Pjwh ¼ wh; kPjwkHðcurl;KÞ 6 kwkH1ðDK Þ;

kw�PjwkL2ðKÞ 6 ChKkwkH1ðDK Þ; kw�PjwkL2ðFÞ 6 Ch1=2
F kwkH1ðDF Þ;

ð4:2Þ
where DK and DF is the union of elements in T j, which have a non-empty intersection with K and F respectively.
The next lemma is important to the a posteriori error analysis for the edge element approximation of (3.3).

Lemma 4.1. For j P 1, suppose that bUj is the solution produced by the Splitting Procedure at the jth iteration of Algorithm 3.1 and
û�j is the solution of the corresponding continuous problem (3.3). Then there exists a constant C depending only on the minimum
angle of T j and the coefficient e in (1.1) such that
kû�j � bUjkHðcurl;XÞ 6 Ckr � ðû�j � bUjÞkL2ðXÞ þ C
X
F2F j

hFksebUj � ntk2
L2ðFÞ

0@ 1A1=2

: ð4:3Þ
Proof. Let e ¼ û�j � bUj, and / 2 H1
0ðXÞ be the solution of the problem
ðer/;rqÞ ¼ ðebUj;rqÞ 8q 2 H1
0ðXÞ: ð4:4Þ
Noting û�j � bUj �r/ 2 X, we have
ke�r/kHðcurl;XÞ 6 Ckr � ekL2ðXÞ;
which implies
kekHðcurl;XÞ 6 Ckr � ekL2ðXÞ þ kr/kL2ðXÞ: ð4:5Þ
By (4.4), the equivalence in Lemma 3.1 and the second equation of (3.2), it is easy to see that
e1
2r/

��� ���2

L2ðXÞ
¼ ebUj;r /� Is

j /
� �� �

:

Using the standard arguments in the a posteriori error analysis for second-order elliptic equations (see, e.g., [30]), we know
kr/kL2ðXÞ 6 C
X
F2F j

hFksebUj � ntk2
L2ðFÞ

0@ 1A1=2

: ð4:6Þ
Now (4.3) follows from (4.5) and (4.6). h

Next we derive the main a posteriori error estimate of this section.

Theorem 4.1. For j P 1, let û�j ; p̂
�
j

� �
be the solution of (3.3), and ðbUj; PjÞ the solution of (3.2) in the step 3 of the jth iteration of

Algorithm 3.1, then we have the following a posteriori error estimate:
û�j � bUj

��� ���
Hðcurl;XÞ

6 C
X
K2T j

ðg2
1;K þ g2

2;KÞ

8<:
9=;

1=2

; ð4:7Þ
where C depends only on the shape regularity of the mesh and the coefficients e and l.

Proof. For e ¼ û�j � bUj, by the regular decomposition [2,10] there exists a vector-valued function w 2 H1ðXÞ3 \ H0ðcurl; XÞ
and a scalar function w 2 H1

0ðXÞ such that
e ¼ wþrw; ð4:8Þ
with the estimate
kwkH1ðXÞ 6 CkekHðcurl;XÞ; kwkH1ðXÞ 6 CkekHðcurl;XÞ: ð4:9Þ
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Invoking the interpolation operators Pj and Is
j , we will write eh 2 Vh

j for PjwþrðIs
j wÞ. Then noting that ðû�j ; p̂�j Þ and

ðeUj; ePjÞ ¼ ðbUj; PjÞ satisfy (3.3) and (3.2) respectively, we derive
l�1r� û�j ;r� e
� �

¼ eðUj�1 �rp̂�j Þ; e
� �

; ð4:10Þ

ðl�1r� bUj;r� ehÞ ¼ ðeðUj�1 �rPjÞ; ehÞ: ð4:11Þ
On the other hand, for any q 2 H1
0ðXÞ and Q 2 S

h
j , we take v ¼ rq and V ¼ rQ in the first equation of (3.3) and (3.2) respec-

tively to obtain
ðerp̂�j ;rqÞ ¼ ðeUj�1;rqÞ; ðerPj;rQÞ ¼ ðeUj�1;rQÞ:
By standard a posteriori error analysis for second-order elliptic problems [30], we know
r p̂�j � Pj

� ���� ���
L2ðXÞ
6 C

X
F2F j

hFkseðUj�1 �rPjÞ � ntk2
L2ðFÞ

0@ 1A1=2

: ð4:12Þ
Now we can deduce the following equivalence by using (4.10) and (4.11):
ðl�1r� e;r� eÞ ¼ l�1r� û�j ;r� e
� �

� ðl�1r� bUj;r� eÞ

¼ e Uj�1 �rp̂�j
� �

; e
� �

� ðl�1r� bUj;r� ðe� ehÞÞ � ðl�1r� bUj;r� ehÞ

¼ e Uj�1 �rp̂�j
� �

; e
� �

� ðl�1r� bUj;r� ðe� ehÞÞ � ðeðUj�1 �rPjÞ; ehÞ

¼ ðeðUj�1 �rPjÞ; e� ehÞ � ðl�1r� bUj;r� ðe� ehÞÞ � ðerðp̂�j � PjÞ; eÞ

¼ ðeðUj�1 �rPjÞ;w�PjwÞ þ eðUj�1 �rPjÞ;r w� Is
j w

� �� �
� ðl�1r� bUj;r� ðw�PjwÞÞ � er p̂�j � Pj

� �
; e

� �
:

Then by using the integration by parts, the approximation properties (4.1) and (4.2) of interpolation operators Pj and Is
j , the

estimates (4.9) and (4.12), we come to
kr � ek2
L2ðXÞ 6 C

X
K2T j

g2
1;K

0@ 1A1=2

kekHðcurl;XÞ;
which, along with (4.3) and Young’s inequality leads to the desired estimate (4.7). h

The local error indicators g1;K and g2;K over each element K derived in Theorem 4.1 are the crucial ingredients in our adap-
tive Algorithm 3.1. Although these a posteriori error indicators do not directly measure the error between the discrete eigen-
function and the exact one, they provide an indirect manner to refine the mesh and proceed to the next iteration. This is one
of the central novelties in this work. As we will see from the numerical experiments, the adaptive Algorithm 3.1 based on this
a posteriori error estimate performs very robustly and satisfactorily, in fact it converges quasi-optimally in terms of the total
degrees of freedom used.

5. Numerical experiments

In this section we carry out a few numerical experiments to verify the effectiveness and robustness of our adaptive Algo-
rithm 3.1. The first two examples are the benchmark problems provided by Dauge [14] and the third one tests the robustness
and reliability of the algorithm for the case with discontinuous coefficients e and l in (1.1) and (1.2).

The implementations are done with the help of the adaptive finite element package PHG [27] developed by Zhang et al.
[33] at the State Key Laboratory of Scientific and Engineering Computing, the Chinese Academy of Sciences. All of the exper-
iments were carried out on a Pentium IV PC with 3.0 GHz CPU and 1 G memory.

In all the numerical implementations, we use the preconditioned conjugate gradient (PCG) method with the nodal aux-
iliary subspace preconditioner proposed in [16] to solve equation (3.5); see the illustration at the end of Section 3.

5.1. Thin L-shaped domain

In this example, the domain X is set to be a thin L-shaped one, i.e., ½�1;1� � ½�1;1� � ½0;1� n ½0;1� � ½�1;0� � ½0;1� (see the
left figure in Fig. 1). The parameters e and l are taken to be e ¼ l ¼ 1:0. The first eigenvalue of this problem is
9.63972384472 [14]. Table 1 displays the number of PCG iterations for solving system (3.5) in each inverse iteration with
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a relative reduction of the Euclidean norm of the residual vector by a factor of 10�10 to be a termination criterion. One can see
that the PCG iteration works very well, with its convergence nearly independent of the mesh sizes and the number of PCG
iterations is only 13 when the degrees of freedom reach 666,514. The left part of Fig. 2 displays the ðx� yÞ cross-section of
the adaptive mesh with 120,502 degrees of freedom.
Table 1
The DOFs and PCG iterations with respect to the adaptive inverse iteration.

Adaptive Step 1 2 3 4 5 6

#DOF 47 262 1282 7418 16,237 39,404
PCG Iters 3 6 8 9 11 11
Adaptive Step 7 8 9 10
#DOF 75,106 120,502 391,498 666,514
PCG Iters 12 12 13 13

Fig. 2. Left: the ðx� yÞ cross-section centered at ð0;0;0:5Þ of the mesh generated by the adaptive inverse iteration for the thin L-shaped domain (with
120,502 unknowns). Right: The ðx� yÞ cross-section centered at ð0;0; 0Þ of the mesh generated by adaptive inverse iteration for the Fichera domain (with
215,254 unknowns).

Fig. 1. The thin L-shaped domain (left) and the Fichera corner domain (right).
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Fig. 3. The error reductions with respect to the adaptive inverse iteration for the thin L-shaped domain (left) and the Fichera domain (right).
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It is known that the singularity of this problem is only caused by the reentrant edge along the z-direction. We observe that
the mesh is very fine around this edge, which means that our error indicator detects the singularity very well. The left part of
Fig. 3 shows the log E— log N curves with E representing the a posteriori error or relative error of the first eigenvalue. It indi-
cates that the adaptive meshes and the associated numerical complexity are quasi-optimal in the sense that E � N�1=3 (or
E � N�2=3 for eigenvalue).
5.2. Fichera corner domain

In this example, we take the domain to be the cube ½�1;1� � ½�1;1� � ½�1;1�, with the cube ½0;1� � ½0;1� � ½0;1� cut off, as
shown in the right of Fig. 1. The first eigenvalue of the problem is 3.21987401386 (with four reliable digits) [14].

Table 2 contains the number of the PCG iterations for solving the singular system (3.5) in each inverse iteration. A relative
reduction of the Euclidean norm of the residual vector by a factor of 10�10 is chosen as a termination criterion. The PCG iter-
ation converges again very well, nearly independent of the mesh sizes.

The right part of Fig. 2 shows that the mesh detects the singularities arising from both the non-convex edge and the cor-
ner at (0,0,0). The right part of Fig. 3 shows the log E— log N curves for the a posteriori error and the relative error of the first
eigenvalue and indicates that the adaptive meshes and the associated numerical complexity are quasi-optimal, i.e. E � N�1=3

(or E � N�2=3 for eigenvalue).
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Fig. 4. Left: The error reductions with respect to the adaptive inverse iteration. l1 ¼ 0:1; l2 ¼ 1:0; Right: The error reductions with respect to adaptive
inverse iterations. e1 ¼ 100; e2 ¼ 1.

Table 2
The DOFs and PCG iterations with respect to the adaptive inverse iteration.

Adaptive step 1 2 3 4 5 6

#DOF 140 940 2901 5653 9843 28,381
PCG Iters 8 10 10 11 12 13
Adaptive step 7 8 9 10 11
#DOF 53,817 113,908 215,254 402,879 759,520
PCG Iters 13 14 14 14 15

Fig. 5. Left: The ðy� zÞ cross-section centered at ð0; 0; 0Þ of the mesh generated by the adaptive inverse iteration (with 179,216 unknowns); Right: The
eigenvector on the ðx� yÞ cross-section centered at ð0; 0; 0Þ (179,216 unknowns). l1 ¼ 0:1; l2 ¼ 1:0.
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5.3. A cubic domain with discontinuous coefficients

This example concerns the Maxwell eigenvalue problem in a domain occupied by two different media. The computing
domain is the cube ½�1;1� � ½�1;1� � ½�1;1�, and the electric permittivity and magnetic permeability are assumed to be
e1;l1 in domain xy P 0 and e2;l2 in domain xy < 0.

For the first case, we let l1 ¼ 0:1;l2 ¼ 1:0, and the electric permittivity e ¼ 1:0 all over the domain. Since the exact eigen-
value is unknown, we take the computing result on a very fine mesh generated by our adaptive algorithm as an exact one.

The left part of Fig. 4 shows the log E— log N curves. We observe that the reductions of a posteriori error and relative error
of eigenvalue are quasi-optimal again.

Fig. 5 shows the mesh and the eigenvector generated by the adaptive inverse iteration respectively. We observe that the
mesh is locally refined near z-axis, where the solution is singular due to the jump of the coefficient l.

In the second case, we take e1 ¼ 100; e2 ¼ 1, and the discrete solution on the mesh with 1,089,777 unknowns to be the
true solution. The results are presented in the right of Fig. 4 (with log–log plot). We observe that the relative errors of eigen-
value confirms the quasi-optimal convergence as before.
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